On Absolute Moments of Characteristic Polynomials of a Certain Class of Complex Random Matrices
نویسندگان
چکیده
منابع مشابه
On absolute moments of characteristic polynomials of a certain class of complex random matrices
Integer moments of the spectral determinant |det(zI−W )|2 of complex random matrices W are obtained in terms of the characteristic polynomial of the Hermitian matrix WW ∗ for the class of matrices W = AU where A is a given matrix and U is random unitary. This work is motivated by studies of complex eigenvalues of random matrices and potential applications of the obtained results in this context...
متن کاملLogarithmic moments of characteristic polynomials of random matrices
In a recent article we have discussed the connections between averages of powers of Riemann’s ζ-function on the critical line, and averages of characteristic polynomials of random matrices. The result for random matrices was shown to be universal, i.e. independent of the specific probability distribution, and the results were derived for arbitrary moments. This allows one to extend the previous...
متن کاملOn Permanental Polynomials of Certain Random Matrices
The paper addresses the calculation of correlation functions of permanental polynomials of matrices with random entries. By exploiting a convenient contour integral representation of the matrix permanent some explicit results are provided for several random matrix ensembles. When compared with the corresponding formulae for characteristic polynomials, our results show both striking similarities...
متن کاملCharacteristic polynomials of real symmetric random matrices
It is shown that the correlation functions of the random variables det(λ−X), in which X is a real symmetric N × N random matrix, exhibit universal local statistics in the large N limit. The derivation relies on an exact dual representation of the problem: the k-point functions are expressed in terms of finite integrals over (quaternionic) k × k matrices. However the control of the Dyson limit, ...
متن کاملNegative moments of characteristic polynomials of random GOE matrices and singularity-dominated strong fluctuations
We calculate the negative integer moments of the (regularized) characteristic polynomials of N × N random matrices taken from the Gaussian Orthogonal Ensemble (GOE) in the limit as N → ∞. The results agree nontrivially with a recent conjecture of Berry & Keating motivated by techniques developed in the theory of singularity-dominated strong fluctuations. This is the first example where nontrivi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematical Physics
سال: 2007
ISSN: 0010-3616,1432-0916
DOI: 10.1007/s00220-007-0270-y